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Abstract

Three-dimensional natural convection in box-like cavities filled with a porous material is revisited, by considering a transient formu-
lation for the energy balance and a quasi-steady formulation for the flow problem. The Generalized Integral Transform Technique
(GITT) is employed in the hybrid numerical-analytical solution of the Darcy law based model for vertical cavities (insulated vertical walls
with differentially prescribed horizontal wall temperatures), employing the vorticity-vector potential formulation. Comparisons with pre-
viously reported numerical solutions are performed and the transition between conductive and convective states is illustrated, centering
on the aspect ratio influence on the flow and heat transfer phenomena. A set of reference results for the steady-state behavior under dif-
ferent aspect ratio is provided for covalidation purposes.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the large number of applications involving buoy-
ancy induced flows in saturated porous media in different
processes, such as those in the chemical, mechanical, envi-
ronmental and geological fields (e.g., heat, mass and fluid
flow in fixed bed chemical reactors, filtering processes, geo-
thermal systems and petroleum reservoirs, to name a few),
the prediction of natural convection in porous media filled
cavities has deserved a broad scope of publications and
reviews along the last few decades [1,2]. Following the same
trend as in all branches of the physical sciences, a consider-
able amount of computer simulation work has been devoted
to this fundamental problem in thermal sciences, aimed at
producing benchmark results for the validation of general
purpose computer software. Such refined simulation tasks
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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have generally been achieved with the aid of conventional
numerical techniques, and most frequently for mathemati-
cal formulations concerning two-dimensional geometries
under different flow models. For three-dimensional formu-
lations, due to the sometimes prohibitive computational
effort associated with discretization processes, the literature
is less abundant [3–13]. The available works for this
situation in general adopt the Darcy flow model, together
with the assumptions of constant and isotropic physical
properties and linear variation with temperature of the
buoyancy term (Boussinesq approximation). In addition,
the cubic geometry is the most frequently one considered,
and the situation of a vertical enclosure (a heated base
and thermally insulated vertical walls) is commonly
employed as the test case for the covalidation of solution
methodologies.

Numerical results from all such different research efforts
are far from coincident, seldom available in tabular form,
and quite rarely for the full transient situations. Quite
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Nomenclature

a, b cavity width and depth, respectively
cp specific heat
d cavity height
Da Darcy number
g gravity acceleration, g = (0, 0, �g)
Fs cavity shape factor
hm average heat transfer coefficient
K permeability of solid matrix
km thermal conductivity of porous medium,

km = Ukf + (1�U)ks

ks thermal conductivity of solid matrix
Mx, My aspect ratio in x and y directions, respectively
Nu Nusselt number, Nu = hmd/km

Nu, NuG overall Nusselt number
NuC characteristic overall Nusselt number
NT truncation order of the eigenfunction expansion

solution (number of terms)
Ra modified Rayleigh number
t time
T temperature
VC cavity characteristic volume

(x*, y*, z*) space coordinates
(x, y, z) dimensionless coordinates

Greek symbols

am solid matrix thermal diffusivity – am = km/
(qcp)fluid

b fluid thermal expansion coefficient
h (x,y,z,s) dimensionless temperature

h
’

HimqðsÞ transformed temperature field
l fluid absolute viscosity
m fluid kinematic viscosity – m = l/q
q fluid density
qs density of solid matrix
s dimensionless time
w vector potential – w (wx, wy, wz)

w
’

ximq transformed vector potential component in the
x direction

w
’

yimq
transformed vector potential component in the
y direction
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recently [14], the Generalized Integral Transform
Technique (GITT) [15–17] has been employed in the devel-
opment of a hybrid numerical–analytical solution for
natural convection in the cubic cavity situation, allowing
for a thorough comparison of previously published numer-
ical results for the steady state Nusselt number. This hybrid
approach has been demonstrated to be an efficient tool in
the production of benchmark results in nonlinear diffusion
and convection–diffusion problems and has been progres-
sively advanced towards the automatic error-controlled
solution of such partial differential problems. At this point,
it is worth mentioning some illustrative contributions on
this method for the specific class of problems of interest
here, namely, the solution of natural convection problems
in cavities under steady and transient regimen, for both
porous media or just fluid filled two-dimensional enclo-
sures [18–23]. The streamfunction-only formulation was
preferred in all such contributions on natural convection
because of the inherent advantages in its combined use with
this hybrid approach, as more closely discussed in [15].
Later on, this hybrid solution scheme was advanced to han-
dle the three-dimensional Navier–Stokes equations [24]
based on the vector–scalar potentials formulation [25–27],
with similar computational advantages with respect to
the two-dimensional case. Since the pioneering work of
Aziz and Hellums [25], the vorticity-vector potential
approach has been receiving increasing attention, when it
was shown that this formulation could lead to more stable
and fast simulations of three-dimensional flows. This for-
mulation was itself originally applied to three-dimensional
natural convection in porous media [3].
The present contribution, following the efforts initiated
in previous works that analyzed three-dimensional flows
via integral transforms [14,24], is aimed at advancing this
computational tool towards the accurate solution of natu-
ral convection within porous media filled rectangular three-
dimensional cavities of arbitrary aspect ratio. We assume
the Darcy flow model with the governing equations
expressed in terms of the vorticity-vector potential formu-
lation, considering a transient formulation for the energy
balance and a quasi-steady formulation for the flow prob-
lem. The computer code was modified to produce reliable
numerical results for the temperature field and Nusselt
numbers for cavities of arbitrary aspect ratio, when reor-
dering procedures and other computational aspects were
emphasized in the improvement of the convergence behav-
ior of the GITT approach, thus extending the algorithm
constructed in [14]. The transition between conductive
and convective states due to the variation of the cavity geo-
metric parameters is also more closely examined.

2. Analysis

Three-dimensional natural convection in an imperme-
able box-like cavity filled with a porous material and satu-
rated with a Newtonian fluid is considered. The flow is
buoyancy induced by heat exchange between the fluid-
porous media and the top and bottom walls.

The configuration considered (Fig. 1) is known as the
vertical cavity problem, in which boundary conditions of
first kind, T0 and T0 + DT, respectively, are imposed at
the top and at the bottom walls, whilst the vertical walls
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Fig. 1. Geometry and coordinates systems for natural convection in a
three-dimensional porous cavity.

Table 1
Steady state overall Nusselt number for different values of aspect ratio and
Rayleigh number

Ra Mx My NuG
a Regimed,a NuG

b Regimed,b Dif

60 1 1 1.72014 3D–1C 1.67 3D–1C �2.9%
60 1 0.5 1.79636 2D–1C/XZ 1.89 2D–1C/XZ +5.2%

100 0.5 0.5 2.13630 2D–1C/XZ – – –
100 0.5 1.0 2.64594 2D–1C/YZ
100 1 1 2.64592 2D–1C/YZ – – –
100 1 2 2.58523 2D–3C/YZ – – –
100 1 4 2.62690 2D–5C/YZ – – –
100 1 8 2.64101 2D–7C/YZ – – –
120 1 1 2.94906 2D–1C/XZ 3.49 2D–1C/XZ �18.3%(2D)

3.94 3D–1Cc

120 3 1 3.00151 2D–4C/XZ 3.49 2D–3C/XZ �16.3%(2D)

3.57 3D–1Cc

120 3 0.5 2.99683 2D–4C/XZ 3.49 2D–3C/XZc �16.5%(2D)

2.98 3D–1C

Dif – Relative difference from present results.
a Present.
b Holst and Aziz [3].
c Pointed as the physically preferred solution, based on Platzman cri-

terion [31]).
d Regime:two-dimensional (2D) or three-dimensional (3D), number of

cells and convection plane for 2D flow.
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are insulated. The governing dimensionless equations for
this problem, in terms of the vorticity-vector potential
dependent variables, within the validity of Darcy’s model,
and after invoking the Boussinesq approximation, are
given by Eqs. (1)–(5) below [14,28]. However, we should
note that the transient term in the momentum equations
was neglected, as usual in dealing with stable Darcian
flows. It has also been shown in [29] that for typical values
of the associated parameters, the order of the transient
term coefficient is at most O(10�4). Thus, the employed
dimensionless formulation is written as:

Momentum equations:

x-component:

Ra
oh
oy
þr2wx ¼ 0; 0 < x < Mx; 0 < y < My;

0 < z < 1; s > 0 ð1Þ
y-component:

� Ra
oh
ox
þr2wy ¼ 0; 0 < x < Mx; 0 < y < My;

0 < z < 1; s > 0 ð2Þ
Energy equation:

oh
os
� oh

ox

owy

oz
þ oh

oy
owx

oz
þ oh

oz

owy

ox
� owx

oy

� �

¼ o
2h

ox2
þ o

2h
oy2
þ o

2h
oz2

; 0 < x < Mx; 0 < y < My;

0 < z < 1; s > 0 ð3Þ
Boundary conditions:

x ¼ 0! owx=ox ¼ wy ¼ 0; oh=ox ¼ 0; 0 < y < My;

0 < z < 1 ð4a–cÞ

x ¼ Mx! owx=ox ¼ wy ¼ 0; oh=ox ¼ 0; 0 < y < My;

0 < z < 1 ð4d–fÞ

y ¼ 0! owy=oy ¼ wx ¼ 0; oh=oy ¼ 0; 0 < x < Mx;

0 < z < 1 ð4g–iÞ
y ¼ My ! owy=oy ¼ wx ¼ 0; oh=oy ¼ 0; 0 < x < Mx;

0 < z < 1 ð4j–lÞ
z ¼ 0! wx ¼ wy ¼ 0; h ¼ 1; 0 < x < Mx;

0 < y < My ð4m–oÞ
z ¼ 1! wx ¼ wy ¼ 0; h ¼ 0; 0 < x < Mx;

0 < y < My ð4p–rÞ

Initial condition:

s ¼ 0! h ¼ 0; 0 < x < Mx; 0 < y < My;

0 < z < 1 ð5Þ
where the following dimensionless groups were employed

x ¼ x�=d; y ¼ y�=d; z ¼ z�=d; Mx ¼ a=d; My ¼ b=d;

h ¼ ðT � T 0Þ=DT ; s ¼ kmt=½ðqcpÞmd2�; Da ¼ K=d2;

Ra ¼ bDTgKd=ðmamÞ
ð6a–jÞ

in which, T0 and TR are reference temperatures, Da repre-
sents the Darcy number, and Ra is the modified Rayleigh
number, both for the porous medium. It should be noted
that the geometry and boundary conditions of the consid-
ered example, result in a vanishing z-component of the vec-
tor potential, i.e., the process of decomposition for this
component results in $2wz = 0, together with wz = 0 at
x = 0, Mx; y = 0, My and o wz/oz = 0 at z = 0 and 1,
leading to the trivial solution wz(x,y,z) = 0, "x, y, z,
0 6 x 6Mx, 0 6 y 6My, 0 6 z 6 1.

The solution methodology here employed is the GITT
approach [15–17], and the details of its application for a
system of equations such as the present can be found in ref-
erences [14,28,30]. Thus, the solution for the components
of the vector potential and the temperature field, as well
as other quantities of practical interest, are then readily
obtained in the form:
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Fig. 2. Influence of shape factor on the transition behavior of the overall Nusselt number (Ra = 100).
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where all quantities that appear in the summations above
are exactly those found in reference [14]. From the defini-
tion for the average Nusselt number we obtain:
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Fig. 3a. Steady state temperature isolines close to the rear faces of the cavities for characteristic volumes varying from 0.25 to 2.0.
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Fig. 3b. Steady state temperature isolines close to the rear faces of the cavities for characteristic volumes varying from 3.0 to 4.0.
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For the analysis here presented the following definitions
are also introduced: characteristic cavity volume; charac-
teristic overall Nusselt number (the overall Nusselt number
NuG scaled with the characteristic cavity volume, here used
for a better visualization of the different curves associated
with the various cavities) and cavity shape factor (the
ratio of the cavity aspect ratios), which are respectively
given as

V C ¼ Mx:My:1; NuC ¼ V CNuðsÞj
z¼Z

^ ¼ V CNuG;

F S ¼ My=Mx ð9–11Þ
3. Results and discussion

The literature review confirms the lack of reference
results for natural convection in porous three-dimensional
enclosures for non-unitary aspect ratios [32]. Among the
very few tabulated results, we must refer to the pioneering
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Fig. 3c. Steady state temperature isolines close the rear faces of the cavities for characteristic volumes varying from 6.0 to 8.0.
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work of Holst and Aziz [3], who several decades ago pre-
sented values for the steady state overall Nusselt number.
As shown in Table 1, these results are in relative good
agreement with those here obtained, which have already
been covalidated against various other more recent works
for the cubic cavity case [14]. For Ra = 60, the differences
on the overall Nusselt number are only around 5%, for
the same final convection regime, while for Ra = 120 these
differences reach 18%, and different final convection regi-
men for the cases of a cubic cavity and a parallelepiped
with Mx = 3 and My = 1. Such deviations are not so rele-
vant considering the pioneering numerical work in Ref. [3],
obtained more than thirty years ago with a fully discrete
approach and limited computational resources. Some extra
results for Ra = 100 are also added in Table 1, under differ-
ent aspect ratios, for reference purposes.

As pointed out before [29], application of the classical
Darcy model to the vertical cavity problem above described,
directly leads to pure conduction, since the elimination of
the transient term in the flow equations tends to shift the
onset of the convection regime to infinity. For the convec-
tion regime to be triggered, a perturbation has to be
introduced in the governing equations. In this way, the
quasi-steady Darcy flow model cannot in fact predict the
actual transient behavior in the present physical situation,
but rather offers information on the qualitative behavior
and reproduces the desired steady state solution, after the
convection regime is triggered by the initial condition per-
turbation [30]. In the following analysis, a value of 10�6 in
the initial condition perturbation was employed through-
out.

For a better understanding of the aspect ratio effect on
the transition process, Fig. 2 shows the evolution of the
overall Nusselt number for cavities with different character-
istic volumes. It can be observed that the transition from the
conductive to the convective regime takes place through dis-
tinct behaviors, according to the shape factor, Eq. (11).
Cavities with higher shape factor present a wider transition
regime, associated with the formation, movement and
accommodation of convective cells. For the cases here con-
sidered, it can also be observed that for cavities with shape
factor larger than 6, the transition regime is not only wider,
but also without a peak in the overall Nusselt number which
is present in the other situations. The influence of the shape
factor on the transient regime is better observed on the dif-
ferent plots of Fig. 2, where it is also presented the evolution
of the overall Nusselt number for various cavities with the
same characteristic volumes. As expected, for the same
value of Rayleigh number, the convective process prevails
over the conductive one within a fairly narrow dimension-
less time range, from 0.3 to 0.35, for all cavities, roughly
independent of characteristic volume and shape factor, cor-
responding to the necessary time for the diffusion front to
more noticeably reach the cavity top.

With respect to the evolution of the convective processes,
for the cases in which the steady state has been achieved
within the range of the dimensionless time considered, in
only one case, Mx = 0.8 and My = 0.8, a three-dimensional
convective pattern was observed. In all other situations the
stable regime was observed to occur under a two-dimen-
sional pattern, with flow characterized by the formation
of one to eight convective cells. Figs. 3a–3c illustrate the
steady state temperature behavior close to the rear faces
of the cavities, for some of the cases studied, from which
one may identify the convective regimen pointed out in
Table 1.
4. Conclusions

Natural convection in laminar regime inside three-
dimensional box-like cavities filled with porous material is
analyzed, by considering a transient formulation for the
energy balance and a quasi-steady formulation for the flow
problem. The Generalized Integral Transform Technique
(GITT) is employed, in the form of a hybrid numerical-ana-
lytical solution, with explicit analytical expressions for the
spatial behavior of the vector potential components and
temperature and numerical computation for the trans-
formed time dependent temperature. A set of reference
results for the overall Nusselt numbers in the steady state
with different geometric configurations is established. In
addition, the transition behavior of the convection phenom-
ena within typical cavities is graphically illustrated, with
emphasis on the identification of the aspect ratio influence.
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